The phase equilibrium and rheological properties of poly(1-trimethylsilyl-1-propyne) solutions obtained with tantalum catalysts are studied. For three polymers with different molecular masses, phase diagrams are determined in a number of solvents. From these diagrams, the Hansen solubility parameters of poly(1-trimethylsilyl-1-propyne) are calculated by the method proposed in this work. Dilute solutions of poly(1-trimethylsilyl-1-propyne) behave as Newtonian liquids, whereas the viscosity of viscoelastic concentrated systems decreases as the shear rate grows. The molecular and rheological characteristics of studied poly(1-trimethylsilyl-1-propyne) samples are compared with the samples prepared with NbCl5 catalysts. Poly(1-trimethylsilyl-1-propyne) obtained with a catalytic system involving tantalum pentachloride is characterized by high intrinsic viscosity and solution viscosity compared to poly(1-trimethylsilyl-1-propyne) prepared with niobium catalyst. The difference in properties is due to the dissimilar ratios of cis and trans units in the samples.
Read full abstract