The best carrier for quantum information transmission is light signal, which has a fast propagation speed and can carry a large amount of information. However, during the propagation of light, dispersion effect and diffraction effect can cause quantum information to be distorted to a certain extent. On the contrary, optical solitons are formed due to the balance between the system’s dispersion (diffraction) effect and nonlinear effect, and they exhibit very high stability and fidelity. Therefore, they have received widespread attention in electromagnetically induced transparency (EIT) media with ultracold atoms. However, cold atomic gas media require extremely low operating temperatures, and the performances of the materials are difficult to control precisely. These factors are unfavorable for the miniaturization and integration of future information devices, thus significantly limiting their practical applications. Semiconductor quantum dot media, on the other hand, possess advantages such as discrete energy level structures and spectral properties similar to those of cold atomic gases, longer decoherence times, larger electric dipole moments, more significant nonlinear optical effects, and easy integration, making them an ideal alternative to cold atomic media. In this work, semiconductor quantum dots are coupled with optical fibers, the most common carrier in optical communication, to explore the formation, storage, and retrieval of temporal optical solitons in the coupled system. The results show that due to the tunneling-induced transparency effect between dots in semiconductor quantum dot molecules, light absorption in the system is greatly suppressed. At the same time, the transverse confinement of the nanofiber can enhance the interaction between light and the system, and the enhanced nonlinear response of the system can balance the dispersion effect, resulting in stable temporal optical solitons. Further research indicates that by turning on and off the inter-dot tunneling coupling, the high-efficiency and high-fidelity storage and retrieval of optical solitons can be realized in the system. These findings have certain guiding significance and potential application value for the processing all-optical information in solid quantum materials.
Read full abstract