Currently, solid waste management strategies in Havana are outdated. This paper aimed to select the most suitable alternative for integrating material recovery facilities (MRF) with waste-to-energy technologies in the city of Havana, Cuba. Seven scenarios were considered: combustion, gasification, and hydrothermal carbonization (HTC) with and without carbon capture, and anaerobic digestion (AD). The selection was based on environmental, techno-economic, and social parameters using an analytic hierarchy process (AHP) as a multi-criteria decision-making tool (MCDM). The MCDM-AHP accounted for qualitative criteria (based on experts' judgments) and quantitative (based on Aspen Plus simulation models). From the MRF, 63% of the input recyclable materials were recovered, representing an energy saving of 256 kW-h/tMSW. The AHP results showed that environmental criteria had the highest priority, resulting in ~63% and ~73% higher than social and techno-economic criteria, respectively. Likewise, from the techno-economic, environmental, and social sub-criteria analysis, investment risk, pollution, and work safety had the major concern compared with the other sub-criteria levels. Overall, MRF+AD was the most suitable scenario (21% preference) for treating Havana's municipal solid waste (MSW), followed by combustion and gasification with carbon capture, respectively. This study confirms that AD is a preference option for emerging economies like Cuba, mainly due to low environmental pollution, high social acceptance, and financial stability in the long term.
Read full abstract