A water-stable In-MOF, constructed based on a conformationally-flexible tetraacid linker, i.e., 2,7-bis(3,5-dicarboxyphenyl)-9,9'-diphenyl-9H-fluorene, i.e., H4DPF, is shown to exhibit a significantly enhanced solid-state fluorescence quantum yield (φf) of 23% in comparison with that of the linker (φfca. 4%) as a consequence of rigidification of the latter by metalation. Application of external stimulus in the form of grinding of the In-MOF leads to a drastic enhancement by 29%, φf from 23 to 52%. Solid-state absorption and emission spectra show that the absorption in the region of 368-550 nm gets diminished with a concomitant change in the emission maximum with a blue shift upon grinding. Fluorescence enhancement with grinding is correlated with a gradual reduction in the size of the particles, as established by SEM analysis. MOF particle aggregation has been invoked to account for the observed fluorescence enhancement in addition to a subtle conformational change in the structure of the linker upon grinding. Intriguingly, the ground MOF particles exhibit aggregation behaviour in the DMF-water solvent system with the emission further increasing up to 75% for the increase in the water fraction (fw) from 0 to 60%; hydrophobic aggregation of particles evidently leads to a change in the conformation of the linker and particle aggregation-enhanced emission (AEE). De-aggregation of particles ensues for fw = 70-90%, as reflected by a gradual decrease in the emission intensity. It is shown that the suspension of ground In-MOF particles in water permits sensing of metal ions, in particular Al3+ ions, by fluorescence quenching with detection at a sub-ppb level. The observed results comprise first demonstration of both mechanoluminescence and AEE of MOF particles.