Since the groundbreaking report on solid-state perovskite solar cells (PSCs) in 2012, PSC receives great attention due to its high power conversion efficiency (PCE) obtainable at low-cost fabrication. A PCE of 9.7% in 2012 was swiftly improved to 25.7% in 2022 via perovskite composition engineering and grain size control. The excellent photovoltaic performance originates from the defect-tolerant property of organic lead halide perovskite associated with the antibonding nature of the valence band. Nevertheless, the reduction of defect-induced trap density of the state is still required to improve further photovoltaic performance and stability. Among the methods reported to reduce defects, additive engineering is one of the promising strategies for controlling crystallographic defects because it can regulate crystallization kinetics and grain boundaries. In this review, we describe materials and methods for additive engineering applied to lead-based perovskite. In addition, the effects of additive engineering on photovoltaic performance and stability are discussed.