LiAlH4 is considered as a promising material for solid state hydrogen storage. However, the lack of reversibility along with sluggish kinetics hinders its practical application. In this paper, hollow carbon nanospheres (HCNs) were used as a porous scaffold to confine LiAlH4 via solvent impregnation method. Nanoconfined LiAlH4 (LiAlH4@HCNs) exhibited significant improvements in hydrogen sorption compared to its bulk counterpart. LiAlH4@HCNs releases hydrogen sharply at 146 °C with full conversion to LiH within 1.5 h. The desorbed material can also be regenerated back to some extent into LiAlH4 under 8 MPa H2 at 150 °C. Measurement of the pressure-composition isotherm suggests an alteration in the equilibrium state upon confinement of LiAlH4 in voids of a few nanometres and thus altered hydrogen thermodynamic paths.