A study on the effect of pore space parameters of sintered titanium alloys on the strength margin of gas turbine compressor blades has been carried out. It is shown that the endurance of parts made of sintered titanium alloys synthesized from powder mixtures based on PT5 titanium powder obtained by the mechanical milling of a titanium sponge must be evaluated taking into account the peculiarities of the morphology of the pore space. An approach to taking into account the effect of the peculiarities of the morphology of the pore space on the endurance limit of gas turbine compressor blades has been proposed and experimentally evaluated using an analysis of the fractal dimension of pore boundaries. The results of experimental studies of the endurance limit of specimens of VT1-0, VT6, and VT8 titanium alloys, which have a different porosity, mean pore size and fractal dimension, are presented. A modeling of the stress-strain state of an airfoil of full-scale low-pressure compressor blades of a shaft gas turbine engine has been performed. The results of fatigue tests of full-scale compressor blades are presented. Based on fracture mechanics approaches, an improved model for the estimation of the endurance limit of specimens of sintered titanium alloys taking into account solid phase properties, pore size and morphology, and total porosity is proposed. A relationship relating the strength margin of full-scale compressor blades to the endurance limit of laboratory specimens, their porosity parameters and the loads acting during the operation of gas turbine engines is proposed. A calculation of the strength margin and the probability of non-failure of gas turbine compressor blades made of a sintered titanium alloy with different pore size and shape, and porosity has been made. Their maximum permissible values have been determined, at which the strength margin and the probability of non-failure of blades are provided, which meet the requirements of normative documents. It is shown that to provide the required value of the strength margin and probability of non-failure of blades, the process to manufacture them must include operations aimed at avoiding pores in the surface layer.
Read full abstract