The most common form of solidification of metals is heterogeneous nucleation, in which the particles, regardless of whether they are endogenous or exogenous, nucleate the primary crystal phase, becoming solid crystal particles and, subsequently, initiating into grains during solidification. Explosive grain initiation has been proposed recently for these particles, which have significant nucleation undercooling, in which once nucleation happens, a certain number of solid particles can initiate into grains simultaneously, resulting in recalescence. This is a different form of grain initiation and has high potential for more significant grain refinement in casting alloys. In this work, an analytical model is designed to describe explosive grain initiation, based on which the criteria for the three different grain initiation forms, explosive grain initiation (EGI), hybrid grain initiation (HGI), and progressive grain initiation (PGI), are derived. These criteria are employed to develop a grain initiation map for the Mg-Al alloy system inoculated with nucleant particles having a log-normal size distribution. This work can not only help us to understand the effect of each condition, such as the cooling rate and the solute concentration, on grain initiation behaviors, but also predict the grain size for alloy systems with relatively impotent nucleant particles during solidification.