Photovoltaic power generation is influenced not only by variable environmental factors, such as solar radiation, temperature, and humidity, but also by the condition of equipment, including solar modules and inverters. In order to preserve energy production, it is essential to maintain and operate the equipment in optimal condition, which makes it crucial to determine the condition of the equipment in advance. This paper proposes a method of determining a degradation of efficiency by focusing on photovoltaic equipment, especially inverters, using LSTM (Long Short-Term Memory) for maintenance. The deterioration in the efficiency of the inverter is set based on the power generation predicted through the LSTM model. To this end, a correlation analysis and a linear analysis were performed between the power generation data collected at the power plant to learn the power generation prediction model and the data collected by the environmental sensor. With this analysis, a model was trained using solar radiation data and power data that are highly correlated with power generation. The results of the evaluation of the model’s performance show that it achieves a MAPE of 7.36, an RMSE of 27.91, a MAE of 18.43, and an R2 of 0.97. The verified model is applied to the power generation data of the selected inverters for the years 2020, 2021, and 2022. Through statistical analysis, it was determined that the error rate in 2022, the third year of its operation, increased by 159.55W on average from the error rate of the power generation forecast in 2020, the first year of operation. This indicates a 0.75% decrease in the inverter’s efficiency compared to the inverter’s power generation capacity. Therefore, it is judged that it can be applied effectively to analyses of inverter efficiency in the operation of photovoltaic plants.
Read full abstract