Boron nitride (BN) has been a popular material in the field of ultraviolet detection because of its excellent thermal conductivity, high breakdown field strength, high absorption coefficient, and strong resistance to radiation. However, the harsh preparation conditions of its large-scale single crystal films limit the rapid development of its devices. In this work, amorphous BN films were deposited by the magnetron sputtering technique at a relatively low temperatures. On the basis of the films, the asymmetric Schottky junction solar-blind ultraviolet detectors were fabricated by the Ohmic and Schottky contact, respectively. The maximum responsivity and detectivity of the detectors are 6.4 μA/W and 2.5 × 1010 Jones under 20 V bias and 81.1 μW/cm2 ultraviolet light irradiation, respectively. More importantly, the fabricated asymmetric Schottky junction detector also achieves the stable self-powered characteristics due to the presence of its built-in electric field, and the performances are further improved after the rapid thermal annealing. The prepared BN asymmetric Schottky junction detector can operate without the need for the external power supply, which have many advantages such as simplifying the equipment structure and being able to operate in wireless. This work will provide a new reference for the design of the next generation of independent sustainable detectors.
Read full abstract