The impacts of global warming and increased CO2 levels on soil processes and crop growth are concerning. Soil enzymes in the rhizosphere, produced mainly by microbes, play a vital role in nutrients mobilization for plants. Nevertheless, a comprehensive understanding of how microbial communities in the rhizosphere respond to increased temperatures and CO2 levels, particularly in relation to nutrient acquisition, is still lacking. Addressing this problem, we grew soybeans under elevated temperature (ET, +2 °C) and CO2 levels (eCO2, +300 ppm), both individually and in combination (eCO2 + eT), in rhizobox mesocosms. Enzyme activity and microbial communities in soybean rhizospheres were investigated using soil zymography. eCO2 increased enzyme activity by 2.5 % to 8.7 %, while eT expanded the hotspot area from 1.8 % to 3.3 %. The combined factors amplified both the hotspot area by 5.3 % to 10.1 % and enzyme activity by 35.4 % to 67.3 %. Compared to ambient conditions, rhizosphere communities under eCO2 were predominantly comprised of r-strategist keystone taxa, including Acidobacteria, Proteobacteria, and Ascomycota. On the contrary, eT induced a shift in the microbial community towards K-selected taxa, characterized by an increased relative abundance of Basidiomycota and Actinobacteria. Furthermore, the combination of eCO2 and eT led to an increase in the relative abundance of key bacterial species (Acidobacteria, Proteobacteria, and Actinobacteria) as well as fungi (Ascomycota and Basidiomycota). These findings indicate the potential significance of enzyme hotspots in modulating responses to climate change. Changes in enzyme activity and hotspot area could indicate the alteration in microbial growth strategies. The treatments exhibited distinct changes in the composition of microbial communities, in network organization, and in the proportion of species designated as r or K-strategists. Overall, these findings highlight the combined effects of global change factors on bacterial and fungal communities, providing insights into their growth strategies and nutrient mobilization under climate change scenarios.