Soil microbiomes are well known to suffer from the effects of rising salinity. There are, however, no current understandings regarding its specific effects on microbial metabolic functions associated with nitrogen (N) and phosphorus (P) cycling, particularly in the Yellow River Delta (YRD), one of the largest estuaries in the world. This research examined soil microbiomes at 50 sites in the YRD region to analyze their co-occurrence networks and their relationship with N (nitrification, denitrification, dissimilatory, assimilatory, fixation, and mineralization) and P (solubilization, mineralization, transportation, and regulation) metabolism processes. Our findings indicate a notable reduction in soil multifunctionality as salinity levels increase, with Halofilum-ochraceum playing a significant role in nitrification, whereas Bacteroidetes-SB0662-bin-6 helps solubilize inorganic P in highly saline areas. High soil salinity negatively affected the amoA gene involved in nitrification and increased the nosZ gene involved in denitrification in extreme salinity soil with 8.2g/kg salt content. Extreme salinity significantly reduced the expression of genes involved in inorganic P solubilization, such as ppa and ppx. Additionally, the alkaline P gene phoD exhibited significant decreases in extremely saline soils, thereby impeding the mineralization of organic P. The neutral community models indicated that microbial community immigration rate showed a linear negative relationship with soil EC in the six N and four P processes. Salinization, however, displayed a nonlinear pattern with clearly defined thresholds on the community of microbes involved in N and P cycling. Reduced microbial diversity and interactions are causing a decline in soil multifunctionality, and the soil multifunctionality and network edges jointly limited the microbial community immigration rate involved in N and P cycling. It is crucial to preserve soil microbial functions to support nutrient cycling and predict the ecological effects of soil salinization.
Read full abstract7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access