Rice (Oryza sativa L.), Poaceae family, forms staple diet of half of world's population, and brinjal (Solanum melongena L.), an important solanaceous crop, are consumed worldwide. Rhizosphere research is gaining importance towards application of knowledge for improving productivity, sustainable agricultural practice, and rhizoremediation for nature restoration. While there are reports on rhizobacteriome of rice, studies comparing structural, functional and metabolomic traits of microbial communities in rhizospheres of rice and brinjal are not yet available. We demonstrated, in Oryza sativa (1144-Hybrid, Dhiren, Local Saran cultivars) and Solanum melongena (Jhiloria, Chandtara, Jotshna cultivars) rhizospheres from Malda, India, using integrated approach of 16S ribosomal sequencing, shotgun metagenomics, and microbial metabolomics to decipher microbial diversity, association with soil physicochemical characteristics, key genes and pathways. Ectoine biosynthesis was significantly expressed in brinjal (Jhiloria), but not in rice rhizosphere. The dominant brinjal rhizobacteriome-specific bacteria comprised Thermus sp., Petrobacter succinatimandens, Thermoanaerobacter sp., and Diaphorobacter sp., that were involved in house-keeping functions including pentose phosphate pathway, biosynthesis of amino acids, lipopolysaccharide, and photosynthesis. The dominant bacteria unique to rice rhizobacteriome (Local Saran) consisted of Aeromonas sp., associated with catechol meta-cleavage, while Clostridium sp., Faecalibacterium prausnitzii, and Roseburia sp. were involved with lysine biosysnthesis in rice (1144-Hybrid). Our results imply novel information for improved breeding of brinjal specific cultivar with enhanced ectoine production associated with osmotic stress tolerance, rice specific cultivars with enhanced lysine production significant to human nutrition and catechol removal for the maintenance of environmental quality.
Read full abstract