Soil microorganisms can do both, mineralize and synthesize organic and condensed phosphate (P) species. Whereas P mineralization has been extensively studied, few studies have assessed the biological synthesis of organic P species, which can potentially accumulate in soil. The goal of this study was to investigate biotic and abiotic P transformations, particularly the synthesis of organic P species, upon water-soluble P addition in the organic (O) horizons of two beech forest sites with contrasting P availability.The two O horizons (low-P and high-P) were subjected to four different nutrient addition treatments (Control without addition, CN, P, and CNP additions) in an incubation experiment of up to 104 days. We combined isotopic tracing (33P-labelled P addition and 18O-enriched soil water) into sequentially extracted P pools with the characterization of organic P species (solution 31P nuclear magnetic resonance (NMR) spectroscopy) and soil respiration measurements.The P availability of the two O horizons shaped the microbial response to the nutrient additions. In the low-P O horizon, P addition stimulated microbial activity together with the increase of organic (phosphodiesters and phosphonates) and condensed (polyphosphates) P species, most likely from microbial origin. In the high-P O horizon, microbes were unaffected by the added P and abiotic processes controlled its fate. CN addition had no effect on P fate in the high-P O horizon but reduced the transformation of added P into organic P and increased soil-derived P in the resin P pool in the low-P O horizon. The 18O isotopic values in phosphate of the resin P pool suggest that the released P was biologically cycled.Our study confirms with a unique multi-analytical approach the microbial synthesis of phosphodiesters, phosphonates, and polyphosphates upon inorganic P addition under low P availability.
Read full abstract