Intensive agriculture is the chief cause of soil degradation, particularly in regions with low soil organic carbon status, such as semi-arid southern India. In the quest to attain sustainable yield and improved soil quality, conservation agriculture (CA) is being advocated and adopted globally, including in India. In this experiment, CA was implemented to investigate the synergistic impacts of tillage and weed management on soil quality index and system yield and to identify a remunerative treatment combination that can sustain system yield and enhance soil quality. Contrasting tillage practices (main plots) included the T1: conventional tillage with cotton–conventional tillage with maize–fallow, i.e., no Sesbania rostrata (Farmers’ practice), T2: conventional tillage with cotton–zero tillage with maize–zero tillage with Sesbania rostrata and T3: zero tillage with cotton + Sesbania rostrata residues–zero tillage with maize + cotton residues–zero tillage with Sesbania rostrata + maize stubbles. Weed management tactics (sub-plots) were W1: chemical weed control, W2: herbicide rotation, W3: integrated weed management and W4: single hand-weeded control in a split-plot design with cotton–maize–Sesbania cropping system over 3 years, in a split-plot design. Principal component analysis (PCA) was performed using the soil quality index (SQI)-CAL Version 1.0 software tool to extract minimum datasets from measured soil properties. A total of 40 soil variables were analyzed at 60 DAS and after the maize harvest, then subjected to principal component analysis (PCA) and subjected to PCA in soil quality index (SQI)-CAL software as to choose variables, minimum dataset and obtain soil quality index. The following soil properties, soil organic carbon (SOC), silt fraction, available soil zinc (Zn), iron (Fe), potassium (K), nitrogen (N), pH, electrical conductivity (EC), soil carbon to nitrogen (C:N) and cation exchange capacity (CEC), were selected as indicators based on correlations, calculated PCA and adept opinions on texture and lime concretions of experimental soil. The soil quality index improved by 23.34% in the T3W4 compared to T1W1. The system yield was 51.79% higher with the adoption of T3W3 compared to T3W4 combinations. Therefore, considering both system yield and soil quality index, T3 and W3 were remunerative and the best treatment combination among all others to sustain both soil and crop productivity in this region.
Read full abstract