Japanese forests were exposed to multiple sources of radioactive contamination. To acquire scientific guidance on forest management planning, it is crucial to understand the long-term radiocesium (137Cs) distribution (and redistribution) over time. To obtain robust evidence of the residual global fallout of 137Cs (137Cs-GFO) after a few decades, we determined 137Cs-GFO inventory in forest soil at 1171 soil pits of 316 plots evenly spaced across Japan from 2006 to 2011, shortly before the Fukushima Dai-ichi Nuclear Power Plant accident. The activity concentration measurements were performed using a NaI well-type scintillation counter. The average (±SD) 137Cs-GFO in forest soil (0–30 cm from the surface) of the National Forest Soil Carbon Inventory (NFSCI) sampling plots uniformly extracted from the entire country was estimated to be 2.27 ± 1.73 kBq m−2 (n = 316) as of Oct. 1, 2008. A high nationwide spatial variation was found in 137Cs-GFO, where relatively high 137Cs-GFO was found along the Sea of Japan compared with the total annual precipitation. We also obtained a reconstructed decay-corrected cumulative 137Cs-GFO dataset from the fallout observatories as the initial 137Cs-GFO. The cumulative 137Cs-GFO of fallout observatories averaged 2.47 ± 0.95 kBq m−2 (n = 39) as of Oct. 1, 2008 and displayed spatial variation similar to that in forest soil. To identify whether 137Cs-GFO remains in forest soil across Japan, we examined a general linear mixed-effect model comparing 137Cs-GFO between forest soil and the observatory under normalized annual precipitation and region. The model did not indicate a significant difference, but relatively lesser 137Cs-GFO was found in forest soil, where the least-squares mean of 137Cs-GFO in forest soils was 79.1% of that of the observatory. The variation in 137Cs-GFO in forest soils within NFSCI sampling plots was 1.4 times greater than that among plots. The high spatial variation in 137Cs-GFO within a 0.1-ha plot strongly suggested the redistribution of 137Cs-GFO within the forest catchment. The vertical distribution pattern of 137Cs-GFO across three depth layers indicated that the 137Cs-GFO redistributions were likely attributed to the movements of sediments and mass. Moreover, when extracting soil pits assumed to have the least soil disturbance from the vertical distribution pattern, no significant difference in 137Cs-GFO was observed between forest soil and observatory data. These findings provide important insights into the stability of 137Cs-GFO in the forest ecosystem. Considering the potential hotspot where 137Cs-GFO can accumulate deeper in the soil (>30 cm in depth), most 137Cs-GFO has remained in the forest for decades. Our study offers microscale heterogeneous 137Cs-GFO distribution in forests for ensuring long-term forest management planning necessary for both the long-term migration and local accumulation of 137Cs in forests.
Read full abstract