Many field and laboratory studies have demonstrated that the addition of easily available carbon can increase rates of decomposition of plant litter or humified soil organic matter, though opposite trends are also common. In boreal forests, a large part of labile carbon enters soil via tree roots and ectomycorrhizal (EM) network. The influence of increased C availability and the presence of EM roots on litter decomposition was studied in a long-term field experiment in a 50-year-old Picea abies plantation. Litterbags containing litter of three species ( Populus tremula, Quercus robur, or P. abies) were buried to the depth of ca. 2.5 cm. The experiment was set up in a full-factorial design with carbon availability and presence of roots as factors. Carbon was added as an aqueous sucrose solution (50 g C m −2) every second week during snow-free period. Spruce roots around and underneath experimental plots were cut once a month. Subsets of litterbags were analysed after 12, 21 and 24 months. The serial dilution technique was used to assess the fungal community composition. The addition of labile carbon led to a strong decrease in litter decomposition rates, associated with consistent shifts in the composition of saprotrophic microfungal communities, and to an increase in the overall density of culturable fungal species ( r-strategists), but not of specialized cellulolytic microfungi ( K-strategists), isolated on Hutchinson agar. Sucrose addition did not affect the number of species isolated but the dominance structure was shifted toward the domination of the 2–4 most abundant species. The presence of EM roots significantly reduced moisture content in decomposing litter but had only weak and inconsistent effect on the decomposition rates and on the community composition of saprotrophic microfungi; these effects did not depend on the level of carbon availability.