Soil in karst areas is rare and precious, and karst carbon sinks play an important role in the global carbon cycle. Therefore, the purpose of karst soil improvement is to improve soil productivity and a carbon sink effect. Biomass amendment experiments in this study included three schemes: filter mud (FM), filter mud + straw + biogas slurry (FSB), and filter mud + straw + cow manure (FSC). The characteristics of soil CO2 production, transport, and the effect on soil respiration carbon emissions in two years were compared and analyzed. The results were as follows: 1. The rate, amount, and depth of CO2 concentration were affected by the combinations with biogas slurry (easy to leach) or cow manure (difficult to decompose). 2. The diurnal variation curves of soil respiration in the FSB- and FSC-improved soils lagged behind those in the control soil for three hours. While the curves of FM-improved soil and the control soil were nearly the same. 3. Soil–air carbon emissions increased by 35.2 tCO2/(km2·a−1) under the FM scheme, decreased by 212.9 tCO2/(km2·a−1) under the FSB scheme, and increased by 279.5 tCO2/(km2·a−1) under the FSC scheme. The results were related to weather CO2 accumulation in the deep or surface layers under different schemes.