Soil fungi play an important role in the soil biogeochemical cycle and are important biological indicators for the ecological remediation of mine tailings contaminated sites, therefore understanding the characteristics of soil fungal communities is a key aspect of pollution remediation. However, the influence of biological factors on the characteristics of fungal community diversity; assembly mechanisms and co-occurrence patterns of fungal community along environmental gradients around tailings are not well understood. In this study, soil samples from forest, agriculture and grass around tailings were collected to reveal the assembly mechanisms and co-occurrence patterns of soil fungal community and to quantify the contribution of abiotic and biotic factors to fungal diversity. The results suggest that vegetation types and Cu concentration together drive the distribution of fungal diversity. We found that Exophiala has potential as a biomarker species indicative of restoration progress. Increased environmental stress accelerates the process of changing fungal community assemblages from stochastic to deterministic, while also allowing fungal communities tend to resist tailings-induced environmental stresses through species coexistence. Together, this study provides new insights into the influence of biological factors on fungal community diversity, as well as revealing mechanisms of fungal community assembly and co-occurrence patterns, which are important for understanding the maintenance mechanisms of fungal community diversity and ecological remediation of tailings-contaminated soils.
Read full abstract