In the literature, infinite-failure software reliability models (SRMs), such as Musa-Okumoto SRM (1984), have been demonstrated to be effective in quantitatively characterizing software testing processes and assessing software reliability. This paper primarily focuses on the infinite-failure (type-II) non-homogeneous Poisson process (NHPP)-based SRMs and evaluates the performances of these SRMs comprehensively by comparing with the existing finite-failure (type-I) NHPP-based SRMs. In more specific terms, to describe the software fault-detection time distribution, we postulate 11 representative probability distribution functions that can be categorized into the generalized exponential distribution family and the extreme-value distribution family. Then, we compare the goodness-of-fit and predictive performances with the associated 11 type-I and type-II NHPP-based SRMs. In numerical experiments, we analyze software fault-count data, collected from 16 actual development projects, which are commonly known in the software industry as fault-count time-domain data and fault-count time-interval data (group data). The maximum likelihood method is utilized to estimate the model parameters in both NHPP-based SRMs. In a comparison of the type-I with the type-II, it is shown that the type-II NHPP-based SRMs could exhibit better predictive performance than the existing type-I NHPP-based SRMs, especially in the early stage of software testing.