This paper presents the development and validation of a hybrid beamforming system based on software-defined radio (SDR), designed for telecommunications engineering education. The system provides an agile and user-friendly platform that allows students to observe, test, and evaluate beamforming techniques in real time. The platform integrates a multichannel SDR device (USRP N310) with traditional radiofrequency equipment and open-source software, facilitating hands-on learning experiences. The paper details the proposed hardware and software architecture and documents the calibration and validation phases. The testing and validation processes were conducted using a 3.5 GHz antenna array in both indoor and outdoor environments. The results demonstrated the system’s effectiveness in achieving the desired beam orientations, with experimental results aligning closely with simulation and theoretical predictions. Significant differences in the radiation patterns observed between the indoor and outdoor measurements were documented, highlighting the impact of environmental factors on beamforming performance. The insights gained from this research provide valuable contributions to the education of future telecommunications engineers, enhancing their understanding of practical beamforming applications and the integration of modern SDR technology.
Read full abstract