Machine learning interatomic potentials (MLIPs) have introduced a new paradigm for atomic simulations. Recent advancements have led to universal MLIPs (uMLIPs) that are pre-trained on diverse datasets, providing opportunities for universal force fields and foundational machine learning models. However, their performance in extrapolating to out-of-distribution complex atomic environments remains unclear. In this study, we highlight a consistent potential energy surface (PES) softening effect in three uMLIPs: M3GNet, CHGNet, and MACE-MP-0, which is characterized by energy and force underprediction in atomic-modeling benchmarks including surfaces, defects, solid-solution energetics, ion migration barriers, phonon vibration modes, and general high-energy states. The PES softening behavior originates primarily from the systematically underpredicted PES curvature, which derives from the biased sampling of near-equilibrium atomic arrangements in uMLIP pre-training datasets. Our findings suggest that a considerable fraction of uMLIP errors are highly systematic, and can therefore be efficiently corrected. We argue for the importance of a comprehensive materials dataset with improved PES sampling for next-generation foundational MLIPs.
Read full abstract