General properties and consequences of the distortion of the structure of a simple liquid subjected to a planar shear flow are reported. In particular, the orientational distribution of particles in the first coordination shell around a given particle is analyzed, and the effect of this distribution on the pressure tensor is discussed. The distorted distribution gives rise to a set of non-Newtonian viscosity coefficients reflecting the occurrence of normal pressure differences in the liquid. Numerical values of these viscosities are given for a soft sphere fluid at 7/8 of the freezing density using the technique of nonequilibrium molecular dynamics. A wide range of shear rates is considered and all viscosity coefficients are found to be functions of the shear rate.
Read full abstract