We calculate the shear relaxation times in four important simple monatomic model fluids: Lennard-Jones, Yukawa, soft-sphere, and hard-sphere fluids. It is observed that in properly reduced units, the shear relaxation times exhibit quasiuniversal behavior when the density increases from the gaslike low values to the high-density regime near crystallization. They first decrease with density at low densities, reach minima at moderate densities, and then increase toward the freezing point. The reduced relaxation times at the minima and at the fluid-solid phase transition are all comparable for the various systems investigated, despite more than ten orders of magnitude difference in real systems. Important implications of these results are discussed.
Read full abstract