PurposeTo measure the refractive index (RI) of commonly available soft contact lens (CL) materials, their packaging solutions and compare to the manufacturers’ nominal RI. The relationship between RI versus water content, and the effect of inaccurate RI when converting lens power measured in solution to in-air back vertex power were examined. MethodsThe RI of 18 single vision soft CL materials were measured using CLR 12–70 digital refractometer. Three lenses of each material were measured, in their packaging solution and then after soaking in standard phosphate buffered saline (PBS). The RIs of packaging solution were also measured. Accuracy requirements for correct wet to dry power conversion based on thick lens formula were projected. ResultsThe standard deviation between three samples was less than 0.005. The measured RI ranged from 1.3744 ± 0.001–1.4265 ± 0.0004 for PBS soaked and from 1.3739 ± 0.0003–1.4264 ± 0.0024 for packaging solution soaked materials. Comparing nominal with mean measured PBS and packaging solution RIs, 5 and 3 lens materials, respectively, fell outside ISO tolerance. The packaging solution RI of DailiesAquaComfortPlus had the largest difference of 0.0040, compared to RI of standard PBS. For converting lens power measured in PBS to in-air power, the difference between measured and nominal RI of 0.0104 would result in wrongly calculated in-air power 0.99 D for a -6.00 D lens. ConclusionThe CLR 12–70 is reliable and accurate refractometer for the measurement of soft CL materials. Accurate RI measurements are of relevance with increased use of wavefront sensors to measure lens power while they are immersed in solution. Even small errors in solution or material RI can lead to significant errors in converted in-air power. To obtain valid in-air lens power results, measurement conditions must match the material and solution RIs used for the conversion.