We discuss all-order factorization for the virtual Compton process at next-to-leading power (NLP) in the ΛQCD/Q and −t\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ \\sqrt{-t} $$\\end{document}/Q expansion (twist-3), both in the double-deeply-virtual case and the single-deeply-virtual case. We use the soft-collinear effective theory (SCET) as the main theoretical tool. We conclude that collinear factorization holds in the double-deeply virtual case, where both photons are far off-shell. The agreement is found with the known results for the hard matching coefficients at leading order αs0\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ {\\alpha}_s^0 $$\\end{document}, and we can therefore connect the traditional approach with SCET. In the single-deeply-virtual case, commonly called deeply virtual Compton scattering (DVCS), the contribution of non-target collinear regions complicates the factorization. These include momentum modes collinear to the real photon and (ultra)soft interactions between the photon-collinear and target-collinear modes. However, such contributions appear only for the transversely polarized virtual photon at the NLP accuracy and in fact it is the only NLP ~ (ΛQCD/Q)1 ~ (−t\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ \\sqrt{-t} $$\\end{document}/Q)1 contribution in that case. We therefore conclude that the DVCS amplitude for a longitudinally polarized virtual photon, where the leading power ~ (ΛQCD/Q)0 ~ (−t\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ \\sqrt{-t} $$\\end{document}/Q)0 contribution vanishes, is free of non-target collinear contributions and the collinear factorization in terms of twist-3 GPDs holds in that case as well.