Systemic anaphylaxis is a life-threatening and allergic reaction that affects various organs. We previously reported that, in the stomach, gastric vasoconstriction occurring at the late phase (15-55 min after injection of ovalbumin antigen) was observed in anesthetized rats sensitized with ovalbumin. In addition, anaphylaxis enhances gastric motility and delays emptying. However, the role of extrinsic autonomic nervous system on antigen-induced gastric alterations was not known. Thus, using the same rat anaphylaxis model, we aimed to determine the changes in the efferent and afferent autonomic nerve activities in the stomach during anaphylactic hypotension. The findings showed that injection of ovalbumin antigen caused substantial systemic hypotension in all sensitized rats. The efferent gastric sympathetic nerve activity (ef-GSNA), but not the efferent vagal nerve activity, increased only at the early phase (1-10 min after injection of ovalbumin antigen) and showed baroreceptor reflex, as evidenced by a stimulatory response to sodium nitroprusside-induced hypotension. In general, excitation of ef-GSNA could induce pylorus sphincter contraction and gastric vasoconstriction. In the present study, we found that sympathectomy attenuated the anaphylaxis-induced decrease in gastric flux but not the increase in gastric vascular resistance. Thus, the increase in ef-GSNA may cause anaphylactic pylorus sphincter contraction but not anaphylactic gastric vasoconstriction. On the other hand, the afferent gastric vagal nerve activity, but not the afferent sympathetic nerve activity, increased during the early phase of anaphylactic hypotension. However, vagotomy produced no effects on the anaphylactic gastric dysfunction. In conclusion, the gastric sympathetic nerves partly modulate stomach function during systemic anaphylaxis.