Bacteria can resist to antibiotics by active exportation mediated by membrane transporters called efflux pumps. These proteins can be specific of a class of antibiotics or responsible for multidrug resistance (MDR). Energy required by efflux pumps can be provided by transmembrane electrochemical gradient of protons (MFS, RND, SMR families) or sodium ions (MATE family) or by ATP hydrolysis (ABC family). Several physiological functions have been described in prokaryotes, such as protection from environmental toxics and regulation of cell homeostasis, which can indirectly contributes to bacterial virulence. In Gram-negative bacteria, efflux transporters usually are organized as multicomponent systems in wich the efflux pump located in the inner membrane works in conjunction with a periplasmic fusion protein and an outer membrane factor. The most frequently encountered pumps are of the RND-type such as AcrB in Escherichia coli or MexB in Pseudomonas aeruginosa. In Gram-positive bacteria, efflux is solely mediated by the pump protein, so described with MFS pumps such as NorA or QacA in Staphylococcus aureus and PmrA in Streptococcus pneumoniae. Efflux transporters have also been described in mycobacteria. Although numerous bacterial pumps have been characterized, the clinical consequences of efflux-mediated resistance are mostly unknown because of variable levels of expression and of the lack of specific markers in laboratory practice. Finally, associating pump-specific inhibitors to efflux-sensitive antibiotics might prove an interesting therapeutic perspective. However, inhibitors that are not toxic to eukaryotic cells remain to be identified.
Read full abstract