Contrast variation SANS and (19)F chemical shifts were measured for three mixed equimolar micelle systems: sodium perfluorooctanoate (SPFO) and sodiumdecylsulfate (SDeS) in 200 mM NaCl, lithium perfluorononanate (LiPFN) and lithium dodecylsulfate (LiDS) in 200 mM LiCl, and a nonionic system C(8)F(17)C(2)H(4)(OC(2)H(4))(9) and C(12)H(25)(OC(2)H(4))(8) in water, all at 25 degrees C. The chemical shift measurements allow the calculation of the average fraction of nearest neighbors of each kind around the reporter group (the trifluoromethyl group). A preference for like neighbors were found in all systems, smallest in the SDeS/SPFO system and largest in the nonionic system, but in all cases substantially smaller than expected at critical conditions. From the SANS measurements the width of the micelle composition distribution was obtained. For the ionic systems similar values were obtained, showing a broadening compared to ideal mixtures, but not broad enough for demixing or clearly bimodal distributions. In the nonionic system the width was estimated as sigma = 0.18 and 0.22 using two different evaluation methods. These values suggest that the system is close to critical conditions. The lower value refers to a direct modeling of the system, assuming an ellipsoidal shape and a Gaussian composition distribution. The modeling showed the nonionic mixed micelles to be prolate ellipsoids with axial ratio 2.2 and an aggregation number larger than 100, whereas the two ionic systems fitted best to oblate shapes (axial ratios 0.8 and 0.65 for SDeS/SPFO and LiDS/LiPFN, respectively) and aggregation numbers of 60 for both.