The study of the dynamics of aerosols produced during a severe accident is vital to the safety analysis of a Sodium-cooled Fast Reactor (SFR). Sodium leakage into the containment following a severe accident may result in the production of sodium aerosols along with fission product aerosols. The in-containment radioactive source term depends upon the settling behaviour of fission product aerosols, which co-agglomerate with sodium fire aerosols. Hence, an in-depth understanding of the dynamics and deposition of aerosols within the containment is essential for the safety assessment of an SFR. The current work uses an open-source code based on the Discrete-Sectional (DS) method to solve the simplified form of General Dynamics Equation (GDE) for aerosols relevant to fast reactors. Aerosols of SrO2, CeO2 and sodium are considered in the present work. The DS code has been modified and further improved by including gravitational coagulation, turbulent coagulation, Brownian deposition, gravitational deposition and thermophoretic deposition so that the code can handle the different processes leading to the deposition of aerosols following a sodium fire. The code is also enhanced to account for the effect of relative humidity through the modified Cooper's equation. The improved code is then validated with different experiments conducted in the Aerosol Test Facility (ATF), India; Mini Sodium Fire Facility (MINA), India; and AHMED (Aerosol and Heat Transfer Measurement Device), Finland. Validation from different facilities confirms the applicability of the code to various scenarios. It is found that the modified DS code could predict the decay of suspended mass concentration of aerosols in different enclosures with reasonable accuracy.
Read full abstract