This study describes a strategy of using zinc selenium quantum dots (ZnSe QDs) modified with 3-mercaptopropionic acid (3-MPA) as the matrix for direct analysis of peptides and proteins from sodium salt solution in surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS). The enhancement of detection sensitivity for these biomolecules was due to the adsorption of positively charged peptides or proteins onto the surfaces of negatively charged ZnSe-3MPA QDs via electrostatic interactions resulting in an increase in ionization efficiency for sodium adduct ions ([M+Na](+)). The applicability of the current approach was demonstrated for a variety of peptides, including leucine-enkephalin, methione-enkephalin, HW6, substance P and angiotensin II, and proteins (cytochrome c, myoglobin and lysozyme). Signal intensities of these peptides or proteins can be enhanced by 25-95 times compared with those obtained by LDI-MS in the absence of ZnSe-3MPA QDs. Applying ZnSe-3MPA QDs to serve as the matrix in SALDI-MS is a simple and effective approach for direct analysis of peptide and protein molecules from sodium salt solution without any pretreatment as the peptides and proteins can be successfully detected as sodium adduct ions ([M+Na](+)).
Read full abstract