Previous studies identified clusters of first-episode psychosis (FEP) patients based on cognition and premorbid adjustment. This study examined a range of socio-environmental risk factors associated with clusters of FEP, aiming a) to compare clusters of FEP and community controls using the Maudsley Environmental Risk Score for psychosis (ERS), a weighted sum of the following risks: paternal age, childhood adversities, cannabis use, and ethnic minority membership; b) to explore the putative differences in specific environmental risk factors in distinguishing within patient clusters and from controls. A univariable general linear model (GLS) compared the ERS between 1,263 community controls and clusters derived from 802 FEP patients, namely, low (n = 223) and high-cognitive-functioning (n = 205), intermediate (n = 224) and deteriorating (n = 150), from the EU-GEI study. A multivariable GLS compared clusters and controls by different exposures included in the ERS. The ERS was higher in all clusters compared to controls, mostly in the deteriorating (β=2.8, 95% CI 2.3 3.4, η2 = 0.049) and the low-cognitive-functioning cluster (β=2.4, 95% CI 1.9 2.8, η2 = 0.049) and distinguished them from the cluster with high-cognitive-functioning. The deteriorating cluster had higher cannabis exposure (meandifference = 0.48, 95% CI 0.49 0.91) than the intermediate having identical IQ, and more people from an ethnic minority (meandifference = 0.77, 95% CI 0.24 1.29) compared to the high-cognitive-functioning cluster. High exposure to environmental risk factors might result in cognitive impairment and lower-than-expected functioning in individuals at the onset of psychosis. Some patients' trajectories involved risk factors that could be modified by tailored interventions.
Read full abstract