BackgroundA main challenge in many types of physical rehabilitation is patient adherence to recommended exercises. Vestibular rehabilitation is the most effective treatment for the symptoms of dizziness, vertigo, imbalance, and nausea caused by vestibular disorders, but adherence levels are particularly low as the rehabilitation program calls for many short exercise sets during the day, which can worsen symptoms and impair balance in the short term. Technological tools have the potential to increase adherence, but to date, there has been no comprehensive analysis, in the context of vestibular rehabilitation, of the specific needs from technology, of its limitations, and of concerns regarding its use. ObjectiveThe aim of the study is to identify the main features required from technology for vestibular rehabilitation, as perceived by patients with vestibular disorders and by vestibular physical therapists, using a socially assistive robot as a test case. We seek here to provide practical information for the development of future vestibular rehabilitation technologies which are based on human-computer interaction (HCI) and human-robot interaction (HRI). MethodsWe conducted a qualitative study with six focus groups (N = 39). Three groups of patients with vestibular disorders (N = 18) and three groups of physical therapists (N = 21) participated in this study. The participants answered structured questions on technologies for vestibular rehabilitation, watched a presentation of two videos of a socially assistive robot (SAR), and completed an online survey. Thematic analysis with a mixed deductive and inductive approach was used to analyze the data. ResultsParticipants preferred phone applications or virtual/augmented reality platforms over an embodied robotic platform. They wanted technology to be adaptive to the different stages of rehabilitation, gamified, easy to use, safe, reliable, portable, and accessible remotely by the therapist. They reported that the technology should provide feedback on the quality and quantity of exercise performance and monitor these factors while considering the tolerability of the ensuing disruptive symptoms. Participants expected that using technology as part of the rehabilitation process would shorten exercise sessions and improve clinical outcomes compared to standard care. SARs for vestibular rehabilitation were perceived as useful mostly for children and patients with chronic vestibular disorders, and their potential use for rehabilitation raised concerns regarding safety, ethics, and technical complexity. ConclusionsAlthough SARs can potentially be used to increase exercise adherence, a phone application appears to be a more suitable medium for this purpose, raising fewer notable concerns from users. We provide a summary of perceived advantages and disadvantages of technology for vestibular rehabilitation, as well as a set of specific requirements from it, which may inform the future development of specific supportive technologies. In addition, the focus group methodology employed demonstrates the importance of participatory design in the development of rehabilitation-supportive technology as participants were able to identify the likely inappropriateness of SARs for the specific case of vestibular rehabilitation.