Diabetic Retinopathy (DR) is defined as the Diabetes Mellitus difficulty that harms the blood vessels in the retina. It is also known as a silent disease and cause mild vision issues or no symptoms. In order to enhance the chances of effective treatment, yearly eye tests are vital for premature discovery. Hence, it uses fundus cameras for capturing retinal images, but due to its size and cost, it is a troublesome for extensive screening. Therefore, the smartphones are utilized for scheming low-power, small-sized, and reasonable retinal imaging schemes to activate automated DR detection and DR screening. In this article, the new DIY (do it yourself) smartphone enabled camera is used for smartphone based DR detection. Initially, the preprocessing like green channel transformation and CLAHE (Contrast Limited Adaptive Histogram Equalization) are performed. Further, the segmentation process starts with optic disc segmentation by WT (watershed transform) and abnormality segmentation (Exudates, microaneurysms, haemorrhages, and IRMA) by Triplet half band filter bank (THFB). Then the different features are extracted by Haralick and ADTCWT (Anisotropic Dual Tree Complex Wavelet Transform) methods. Using life choice-based optimizer (LCBO) algorithm, the optimal features are chosen from the mined features. Then the selected features are applied to the optimized hybrid ML (machine learning) classifier with the combination of NN and DCNN (Deep Convolutional Neural Network) in which the SSD (Social Ski-Driver) is utilized for the best weight values of hybrid classifier to categorize the severity level as mild DR, severe DR, normal, moderate DR, and Proliferative DR. The proposed work is simulated in python environment and to test the efficiency of the proposed scheme the datasets like APTOS-2019-Blindness-Detection, and EyePacs are used. The model has been evaluated using different performance metrics. The simulation results verified that the suggested scheme is provides well accuracy for each dataset than other current approaches.