Given the significant impact of transportation-related carbon emissions on air quality and climate change, understanding the regional dynamics of these emissions is crucial. Despite numerous studies on carbon emissions, there is a lack of comprehensive analysis of China's interprovincial transport carbon emission correlation network. Based on China's provincial data from 2007 to 2021, we analyzed the network's basic structural characteristics and categorized it into four significant plates to investigate their interactions. Subsequently, motif analysis is employed to examine the micro-correlation patterns within the network, and the Exponential random graph model (ERGM) is utilized to analyze the network's formation mechanism. Findings reveal that: (1) Provinces with high correlation intensity are predominantly concentrated in the eastern region, such as Shanghai and Beijing. Additionally, provinces in the eastern region assume a central role in the transport carbon emission correlation network, mainly receiving carbon emissions from other provinces. In contrast, the western region primarily emits carbon emissions to other provinces, continuously converging towards the center. (2) The network is segmented into net beneficiary plate, net overflow plate, bidirectional spillover plate, and broker plate, with distinct roles and influences across different years. (3) Bidirectional correlation motif structures emerge as primary influencers within the network, although specific structures impede interregional communication and collaborative emission reduction. (4) Internal network's structural variables, such as mutuality, cyclic triple, and geometrically weighted edgewise shared partner, along with influencing factors including government intervention, urbanization rate, openness, fiscal expenditure on transport, and province adjacency significantly impact the formation of the transport carbon emission correlation network. The above transportation network research provides a theoretical basis for the country to promote low-carbon transportation and improve air quality, and also has important guiding significance for the cross-regional collaborative emission reduction work of provinces.