HER3 is mutated in ~2%-10% of cancers depending on the cancer type. We found the HER3-V104L mutation to be activating from patient-derived mutations introduced via lentiviral transduction in HER3KO HER2 + HCC1569 breast cancer cells in which endogenous HER3 was eliminated by CRISPR/Cas9. Cells expressing HER3-V104L showed higher p-HER3 and p-ERK1/2 expression versus cells expressing wild-type HER3 or HER3-V104M. Patients whose tumor expressed the HER3 V104L variant had a reduced probability of overall survival compared to patients lacking a HER3 mutation whereas we did not find a statistically significant difference in overall survival of various cancer patients with the HER3 V104M mutation. Our data showed that HER2 inhibitors suppressed cell growth of HCC1569HER3KO cells stably expressing the HER3-V104L mutation. Cancer cell lines (SNU407, UC15 and DV90) with endogenous HER3-V104M mutation showed reduced cell proliferation and p-HER2/p-ERK1/2 expression with HER2 inhibitor treatment. Knock down of HER3 abrogated cell proliferation in the above cell lines which were overall more sensitive to the ERK inhibitor SCH779284 versus PI3K inhibitors. HER3-V104L mutation stabilized HER3 protein expression in COS7 and SNUC5 cells. COS7 cells transiently transfected with the HER3-V104L mutation in the presence of HER binding partners showed higher expression of p-HER3, p-ERK1/2 versus HER3-WT in a NRG-independent manner without any change in AKT signaling. Overall, this study shows the clinical relevance of the HER3 V104L and the V104M mutations and its response to HER2, PI3K and ERK inhibitors.