Abstract

We recently reported that DNA demethylase ten-eleven translocation 1 (TET1) upregulates nuclear factor erythroid 2-related factor 2 (Nrf2) in 5-fluorouracil-resistant colon cancer cells (SNUC5/5-FUR). In the present study, we examined the effect of histone modifications on Nrf2 transcriptional activation. Histone deacetylase (HDAC) and histone acetyltransferase (HAT) were respectively decreased and increased in SNUC5/5-FUR cells as compared to non-resistant parent cells. Mixed-lineage leukemia (MLL), a histone methyltransferase, was upregulated, leading to increased trimethylation of histone H3 lysine 4, while G9a was downregulated, leading to decreased dimethylation of histone H3 lysine 9. siRNA-mediated MLL knockdown decreased levels of Nrf2 and HO-1 to a greater extent than did silencing HAT1. Host cell factor 1 (HCF1) was upregulated in SNUC5/5-FUR cells, and we observed interaction between HCF1 and MLL. Upregulation of O-GlcNAc transferase (OGT), an activator of HCF1, was also associated with HCF1-MLL interaction. In SNUC5/5-FUR cells, a larger fraction of OGT was bound to TET1, which recruits OGT to the Nrf2 promoter region, than in SNUC5 cells. These findings indicate that SNUC5/5-FUR cells are under oxidative stress, which induces expression of histone methylation-related proteins as well as DNA demethylase, leading to upregulation of Nrf2 and 5-FU resistance.

Highlights

  • IntroductionAcetylation, ubiquitination, and phosphorylation regulate gene expression programs

  • Histone modifications including methylation, acetylation, ubiquitination, and phosphorylation regulate gene expression programs

  • HDAC1 expression was decreased and HAT1 expression was increased in SNUC5/5-FUR cells compared to SNUC5 cells, resulting in increased H3K9 acetylation (H3K9Ac) (Figure 2A)

Read more

Summary

Introduction

Acetylation, ubiquitination, and phosphorylation regulate gene expression programs. The mixed-lineage leukemia (MLL) family of histone methyltransferases regulates gene expression by methylating lysine 4 of histone H3 (H3K4), which is associated with an active chromatin state [1]. Histone-lysine N-methyltransferase, SET, or MLL acts as the catalytic subunit of the protein complexes associated with the SET/COMPASS complex or MLL/COMPASS-like complex [2]. These subunits aid in complex assembly and recruitment to targets, and modulate the methyltransferase activity of the SET domain-containing subunits [1, 3]. TET proteins have been implicated in genome-wide DNA methylation control, gene expression regulation, cellular differentiation, and cancer development [6,7,8]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call