To optimize gene expression under different environmental conditions, many organisms have evolved systems which can quickly up- and down-regulate the activity of other genes. Recently, the SNF1 kinase complex from yeast and the AMP-activated protein kinase complex from mammals have been shown to represent homologous metabolic sensors that are key to regulating energy levels under times of metabolic stress. Using heterologous probing, we have cloned the Drosophila melanogaster homologue of SNF4, the noncatalytic effector subunit from this kinase complex. A sequence corresponding to the partial genomic sequence as well as the full-length cDNA was obtained, and shows that the D. melanogaster SNF4 is encoded in a 1944-bp cDNA representing a protein of 648 amino acids (aa). Southern analysis of Drosophila genomic DNA in concert with a survey of mammalian SNF4 ESTs indicates that in metazoans, SNF4 is a duplicated gene, and possibly even a larger gene family. We propose that one gene copy codes for a short (330 aa) protein, whereas the second locus codes for a longer version (<410 aa) that is extended at the carboxy terminus, as typified by the Drosophila homologue presented here. Phylogenetic analysis of yeast, invertebrate, and multiple mammalian isoforms of SNF4 shows that the gene duplication likely occurred early in the metazoan lineage, as the protein products of the different loci are relatively divergent. When the phylogeny was extended beyond the SNF4 gene family, SNF4 shares sequence similarity with other cystathionine-β-synthase domain-containing proteins, including IMP dehydrogenase and a variety of uncharacterized Methanococcus proteins.Key words: SNF4, AMPK gamma subunit, derepression, gene family, phylogeny.