Achromatic metalenses formed using previous design methods face a compromise between diameter, numerical aperture, and working wave band. To address this problem, the authors coat the refractive lens with a dispersive metasurface and numerically demonstrate a centimeter-scale hybrid metalens for the visible band of 440-700 nm. By revisiting the generalized Snell law, a universal design of a chromatic aberration correction metasurface is proposed for a plano-convex lens with arbitrary surface curvatures. A highly precise semi-vector method is also presented for large-scale metasurface simulation. Benefiting from this, the reported hybrid metalens is carefully evaluated and exhibits 81% chromatic aberration suppression, polarization insensitivity, and broadband imaging capacity.
Read full abstract