BackgroundMice were bitten by five-pace vipers (Deinagkistrodon acutus), and then envenomed. It was well-known that the snake venom mainly disturbed the blood homeostasis of the envenomed victims. Ocassionally, we found that the venom of D. acutus could inhibit the contraction tension of mouse ileum, so in this study we aimed to identify the active component inhibiting the contraction tension of mouse ileum in the snake venom.ResultsThe active component inhibiting the contraction tension of mouse ileum, designated as Dacin, was isolated from D. acutus venom, purified to protein homogeneity and composed of a single peptide chain, about 23 kDa analyzed by SDS-PAGE, and 22, 947. 9 Da measured by MALDI-TOF-MS. Not only the results of its PMF blasted by Mascot indicated that Dacin may be one snake venom metalloproteinase (SVMP), but also the results of the biochemical and in-vivo assays as follow demonstrated that it was one SVMP: it cleaved Aα and Bβ chains, not Cγ of bovine fibrinogen within 1 h, and also hydrolyzed fibrin polymer; besides its fibrino(geno)lytic activities were strongly inhibited by β- mercaptoethanol, EDTA and EGTA; and it could induce a hemorrhagic reaction under the dorsal skin of mouse. In the isolated tissue assays, Dacin caused the concentration-dependent and time-dependent inhibitory actions on the spontaneous contraction tension of the ileum smooth muscle of mouse, and the inhibitory effects were irreversible.ConclusionsTaken together, for the first time one active component (Dacin, a SVMP) that irreversibly inhibited the spontaneous contraction tension of mouse ileum has been isolated and identified from D. acutus venom. The findings may provide not only a new insight for toxicological researches on SVMPs and venoms of the vipers, but also a reference for clinicians to treat the snake-bitten victims. However, Dacin’s inhibitory molecular mechanism will be further studied in the future.
Read full abstract