Pyruvate dehydrogenase reaction utilizing glucose-derived pyruvate is an almost exclusive source of acetyl-CoA in different cell mitochondrial compartments of the brain. In neuronal mitochondria, the largest fraction of acetyl-CoA is utilized for energy production and the much smaller one for N-acetyl-L-aspartate (NAA) synthesis. Cholinergic neurons, unlike others, require additional amounts of acetyl-CoA for acetylcholine synthesis. Therefore, several neurotoxic signals, which inhibit pyruvate dehydrogenase, generate deeper shortages of acetyl-CoA and greater mortality of cholinergic neurons than noncholinergic ones. NAA is considered to be a marker of neuronal energy status in neuropathic brains. However, there is no data on putative differential fractional distribution of the acetyl-CoA pool between energy producing and NAA or acetylcholine synthesizing pathways in noncholinergic and cholinergic neurons, respectively. Therefore, the aim of this study was to investigate whether zinc-excess, a common excitotoxic signal, may evoke differential effects on the NAA metabolism in neuronal cells with low and high expression of the cholinergic phenotype. Differentiated SN56 neuronal cells, displaying a high activity of choline acetyltransferase and rates of acetylcholine synthesis, contained lower levels of acetyl-CoA and NAA, being more susceptible to ZnCl2 exposition that the nondifferentiated SN56 or differentiated dopaminergic SHSY5Y neuronal and astroglial C6 cells. Differentiated SN56 accumulated greater amounts of Zn2+ from extracellular space than the other ones, and displayed a stronger suppression of pyruvate dehydrogenase complex activity and acetyl-CoA, NAA, ATP, acetylcholine levels, and loss of viability. These data indicate that the acetyl-CoA synthesizing system in neurons constitutes functional unity with energy generating and NAA or acetylcholine pathways of its utilization, which are uniformly affected by neurotoxic conditions.
Read full abstract