Elucidation of TNF-directed mechanisms for cell death induction and maintenance of tumor growth has revealed a role for receptor-interacting protein kinases 1 and 3 (RIPK1/RIP1 and RIPK3/RIP3), components of the necrosome complex, as determinants of cell fate. Here, the participation of TNF signaling was analyzed with regard to the cytotoxic action of different DNA-damaging agents in a panel of colon cancer cells. While most of these cell lines were insensitive to TNF, combination with these drugs increased sensitivity by inducing cell death and DNA damage, especially in the case of the topoisomerase inhibitor SN38. Changes in levels of RIP1 and RIP3 occurred following monotherapy with SN38 or in combination with TNF. Downregulation of RIP1 resulted in increased resistance to SN38, implying a requirement for RIP1 in mediating cytotoxicity through the TNF/TNFR signaling pathway. Downregulation of RIP1 in a xenograft model impaired tumor growth inhibition from SN38 treatment, suggesting the potential of RIP1 to determine the clinical outcome of irinotecan treatment. These results indicate that TNF plays a key role in determining the cytotoxic effectiveness of SN38 in colorectal cancer and suggests a re-evaluation of TNF-based interventions to enhance therapeutic efficacy.Implications: The capacity of RIP1 to influence drug sensitivity suggests RIP1 may have biomarker potential. Mol Cancer Res; 15(4); 395-404. ©2017 AACR.