Vairimorpha (Nosema) ceranae is a single-cellular fungus that obligately infects the midgut epithelial cells of adult honeybees, causing bee microsporidiosis and jeopardizing bee health and production. This work aims to construct the full-length transcriptome of V. ceranae and conduct a relevant investigation using PacBio single-molecule real-time (SMRT) sequencing technology. Following PacBio SMRT sequencing, 41,950 circular consensus (CCS) were generated, and 25,068 full-length non-chimeric (FLNC) reads were then detected. After polishing, 4387 high-quality, full-length transcripts were gained. There are 778, 2083, 1202, 1559, 1457, 1232, 1702, and 3896 full-length transcripts that could be annotated to COG, GO, KEGG, KOG, Pfam, Swiss-Prot, eggNOG, and Nr databases, respectively. Additionally, 11 alternative splicing (AS) events occurred in 6 genes were identified, including 1 alternative 5' splice-site and 10 intron retention. The structures of 225 annotated genes in the V. ceranae reference genome were optimized, of which 29 genes were extended at both 5' UTR and 3' UTR, while 90 and 106 genes were, respectively, extended at the 5' UTR as well as 3' UTR. Furthermore, a total of 29 high-confidence lncRNAs were obtained, including 12 sense-lncRNAs, 10 lincRNAs, and 7 antisense-lncRNAs. Taken together, the high-quality, full-length transcriptome of V. ceranae was constructed and annotated, the structures of annotated genes in the V. ceranae reference genome were improved, and abundant new genes, transcripts, and lncRNAs were discovered. Findings from this current work offer a valuable resource and a crucial foundation for molecular and omics research on V. ceranae.
Read full abstract