Selective laser sintering (SLS) has become a viable approach for producing biodegradable medical implants in various clinical applications. The resulting scaffolds typically exhibit a powdery microstructure, which may potentially impact the behavior of immune cells and immune responses in surrounding tissues. However, limited research has been conducted to understand the effect of surface morphology in SLS-fabricated scaffolds on local immune environments. This study aims to compare the effect of SLS-fabricated polycaprolactone (PCL) scaffolds with powdery and smooth surface morphologies on immune-related biological responses. Compared with those on the powdery micromorphology, RAW264.7 macrophages displayed greater dispersion and adopted a spread and elongated morphology on the scaffolds with smooth surface. The expression levels of arginase-1 and CD206 were found to be upregulated in macrophages adhering to the PCL scaffolds with smooth surface, accompanied by an augmented secretion of anti-inflammatory cytokines TGF-β and IL-10. Conversely, there was a decrease in the secretion of pro-inflammatory cytokines TNF-α and IL-12. When implanted invivo, the SLS-derived scaffolds were completely covered by host tissues, Withing increased collagen deposition, indicating good histocompatibility. At 1-week post-implantation, there was a significantly higher presence of M2-type macrophages surrounding the scaffold compared to M1 macrophages in both groups. By 3 weeks post-implantation, the overall level of macrophages had decreased in both groups. However, a significant higher level of M1 macrophages were observed in the powdery scaffold group. At the same time, the number of neutrophils around the powder scaffold increased significantly, demonstrating long-term local inflammatory responses. The results suggested that post-treated scaffolds with smooth surfaces can effectively reduce local inflammation, making them more suitable for clinical implantation.
Read full abstract