We provide sufficient conditions for smooth conjugacy between two Anosov endomorphisms on the two-torus. From that, we also explore how the regularity of the stable and unstable foliations implies smooth conjugacy inside a class of endomorphisms including, for instance, the ones with constant Jacobian. As a consequence, we have in this class a characterisation of smooth conjugacy between special Anosov endomorphisms (defined as those having only one unstable direction for each point) and their linearisations.