Tobacco smoke (TS) is the leading cause for lung cancer (LC), and female smokers are at a greater risk for LC. Yet, the underlying causes are unknown. We performed whole genome scans in TS exposed wild type and histologically characterized tumor lesions of cRaf transgenic mice. We constructed miRNA-gene and transcription factor-miRNA/gene regulatory networks and determined sex-specific gene regulations by evaluating hormone receptor activities. We validated the findings from TS exposed cRaf mice in a large cohort of smoking and never-smoking LC patients. When compared to males, TS prompted a sevenfold increase in tumor multiplicity in cRaf females. Genome-wide scans of tumor lesions identified 161 and 53 genes and miRNAs, which code for EGFR/MAPK signaling, cell proliferation, oncomirs and oncogenes, and 50% of DEGs code for immune response and tumor evasion. Outstandingly, in transgenic males, TS elicited upregulation of 20 tumor suppressors, some of which are the targets of the androgen and estrogen receptor. Conversely, in females, 18 tumor suppressors were downregulated, and five were specifically repressed by the estrogen receptor. We found TS to perturb the circadian clock in a sex-specific manner and identified a female-specific regulatory loop that consisted of the estrogen receptor, miR-22-3p and circadian genes to support LC growth. Finally, we confirmed sex-dependent tumor promoting effects of TS in a large cohort of LC patients. Our study highlights the sex-dependent genomic responses to TS and the interplay of circadian clock genes and hormone receptors in the regulation of oncogenes and oncomirs in LC growth.
Read full abstract