The rise of mobile communication, low-power chips, and the Internet of Things has made smartwatches increasingly popular. Equipped with inertial measurement units (IMUs), these devices can recognize user activities through artificial intelligence (AI) analysis of sensor data. However, most existing AI-based activity recognition algorithms require significant computational power and storage, making them unsuitable for low-power devices like smartwatches. Additionally, discrepancies between training data and real-world data often hinder model generalization and performance. To address these challenges, we propose LIMUNet and its smaller variant LIMUNet-Tiny—lightweight neural networks designed for human activity recognition on smartwatches. LIMUNet utilizes depthwise separable convolutions and residual blocks to reduce computational complexity and parameter count. It also incorporates a dual attention mechanism specifically tailored to smartwatch sensor data, improving feature extraction without sacrificing efficiency. Experiments on the PAMAP2 and LIMU datasets show that the LIMUNet improves recognition accuracy by 2.9% over leading lightweight models while reducing parameters by 88.3% and computational load by 58.4%. Compared to other state-of-the-art models, LIMUNet achieves a 9.6% increase in accuracy, with a 60% reduction in parameters and a 57.8% reduction in computational cost. LIMUNet-Tiny further reduces parameters by 75% and computational load by 80%, making it even more suitable for resource-constrained devices.
Read full abstract