Accurately determining the spatiotemporal variability of ozone on a regional to intercontinental scale is essential for air quality studies. In the present study, a first systematic evaluation and analysis of long-term (2009-2020) gridded datasets (0.5° × 0.625°) of total columnar ozone (TCO) retrieved from Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2TCO) is evaluated for the Indian region. The MERRA-2TCO is first validated with observations (IMDTCO) and then further compared with the Atmospheric Infrared Sounder (AIRSTCO) satellite datasets. For an in-depth comparison and statistical analysis, the dataset has been segregated into seven distinct regions, i.e., Western Himalaya (WH), North East (NE), North Central (NC), North West (NW), West Peninsula India (WPI), East Peninsula India (EPI), and South Peninsula India (SPI). Descriptive statistics (NMSE, FB, R, FA2, and d) reveals a significant correlation of MERRA-2TCO against IMDTCO for Delhi with NMSE (0.0013), FB (- 0.029) and Varanasi NMSE (0.0008), FB (- 0.014). The results of simple linear regression analysis show an increasing TCO trend value of 0.31% and 0.44% per decade in both the cities, respectively. A comparison of MERRA-2TCO with AIRSTCO shows a significant correlation of 0.62-0.87 in different regions of India. Furthermore, in support of Brewer's circulation pattern, an increasing shift of columnar ozone from low (SPI) to high (WH) latitudinal regions is observed. Our results show that the MERRA-2 ozone dataset can be effectively used for ozone air quality studies over India and this analysis may strengthen the need for independent, high-quality, and consistent ozone measurements with small uncertainties.
Read full abstract