Graph processing is one of the important research topics in the big-data era. To build a general framework for graph processing by using a DRAM-based FPGA board with deep memory hierarchy, one of the reasonable methods is to partition a given big graph into multiple small subgraphs, represent the graph with a two-dimensional grid, and then process the subgraphs one after another to divide and conquer the whole problem. Such a method (grid-graph processing) stores the graph data in the off-chip memory devices (e.g., on-board or host DRAM) that have large storage capacities but relatively small bandwidths, and processes individual small subgraphs one after another by using the on-chip memory devices (e.g., FFs, BRAM, and URAM) that have small storage capacities but superior random access performances. However, directly exchanging graph (vertex and edge) data between the processing units in FPGA chip with slow off-chip DRAMs during grid-graph processing leads to limited performances and excessive data transmission amounts between the FPGA chip and off-chip memory devices. In this article, we show that it is effective in improving the performance of grid-graph processing on DRAM-based FPGA hardware accelerators by leveraging the flexibility and programmability of FPGAs to build application-specific caching mechanisms, which bridge the performance gaps between on-chip and off-chip memory devices, and reduce the data transmission amounts by exploiting the localities on data accessing. We design two application-specific caching mechanisms (i.e., vertex caching and edge caching ) to exploit two types of localities (i.e., vertex locality and subgraph locality ) that exist in grid-graph processing, respectively. Experimental results show that with the vertex caching mechanism, our system (named as FabGraph) achieves up to 3.1× and 2.5× speedups for BFS and PageRank, respectively, over ForeGraph when processing medium graphs stored in the on-board DRAM. With the edge caching mechanism, the extension of FabGraph (named as FabGraph+) achieves up to 9.96× speedups for BFS over FPGP when processing large graphs stored in the host DRAM.
Read full abstract