A better understanding of previous accidents is an effective way to reduce the occurrence of similar accidents in the future. In this paper, a complex network approach is adopted to construct a directed weighted hazard network (DWHN) to analyze topological features and evolution of accidents in the subway construction. The nodes are hazards and accidents, the edges are multiple relationships of these nodes and the weight of edges are occurrence times of repetitive relationships. The results indicate that the DWHN possesses the property of small-world with small average path length and large clustering coefficient, indicating that hazards have better connectivity and will spread widely and quickly in the network. Moreover, the DWHN has the property of scale-free network for the cumulative degree distribution follows a power-law distribution. It makes DWHN more vulnerable to target attacks. Controlling key nodes with higher degree, strength and betweenness centrality will destroy the connectivity of DWHN and mitigate the spreading of accidents in the network. This study is helpful for discovering inner relationships and evolutionary features of hazards and accidents in the subway construction.
Read full abstract